

	uesti	Answer	Marks	Guidance
2	(i)	$\begin{aligned} & \theta=-\pi / 2: \mathrm{O}(0,0) \\ & \theta=0: \mathrm{P}(2,0) \\ & \theta=\pi / 2: \mathrm{O}(0,0) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	Origin or O, condone omission of (0,0) or O Or, say at $\mathrm{P} x=2, y=0$, need P stated Origin or O , condone omission of $(0,0)$ or O
2	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta} \\ & =\frac{2 \cos 2 \theta}{-2 \sin \theta}=-\frac{\cos 2 \theta}{\sin \theta} \end{aligned}$ When $\theta=\pi / 2 \mathrm{~d} y / \mathrm{d} x=-\cos \pi / \sin \pi / 2=1$ When $\theta=-\pi / 2 \mathrm{~d} y / \mathrm{d} x=-\cos (-\pi) / \sin (-\pi / 2)=-1$ Either $1 \times-1=-1$ so perpendicular Or gradient tangent $=1 \Rightarrow$ meets axis at 45°, similarly, gradient $=-1 \Rightarrow$ meets axis at 45° oe	M1 A1 M1 A1 A1 [5]	their $\mathrm{d} y / \mathrm{d} \theta / \mathrm{d} x / \mathrm{d} \theta$ any equivalent form www (not from $-2 \cos 2 \theta / 2 \sin \theta$) subst $\theta=\pi / 2$ in their equation Obtaining $\mathrm{d} y / \mathrm{d} x=1$, and $\mathrm{d} y / \mathrm{d} x=-1$ shown (or explaining using symmetry of curve) www justification that tangents are perpendicular www dependent on previous A1
2	(iii)	$\begin{aligned} & \text { At } \mathrm{Q}, \sin 2 \theta=1 \Rightarrow 2 \theta=\pi / 2, \theta=\pi / 4 \\ & \Rightarrow \quad \text { coordinates of } \mathrm{Q} \text { are }(2 \cos \pi / 4, \sin \pi / 2) \\ & =(\sqrt{2}, 1) \end{aligned}$	A1 A1 [3]	or, using the derivative, $\cos 2 \theta=0$ soi or their $\mathrm{d} y / \mathrm{d} x=0$ to find θ. If the only error is in the sign or the coeff of the derivative in (ii), allow full marks in this part (condone $\theta=45^{\circ}$) www (exact only) accept $2 / \sqrt{ } 2$
2	(iv)	$\begin{aligned} & \sin ^{2} \theta=\left(1-\cos ^{2} \theta\right)=1-1 / 4 x^{2} \\ & \Rightarrow \quad y=\sin 2 \theta=2 \sin \theta \cos \theta \\ & \quad=(\pm) x \sqrt{ }\left(1-1 / 4 x^{2}\right) \\ & \Rightarrow \quad y^{2}=x^{2}\left(1-1 / 4 x^{2}\right)^{*} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	```oe, eg may be \(x^{2}=\ldots .\). Use of \(\sin 2 \theta=2 \sin \theta \cos \theta\) subst for \(x\) or \(y^{2}=4 \sin ^{2} \theta \cos ^{2} \theta\) (squaring) either order oe squaring or subst for \(x\) AG```

	uest	Answer	Marks	Guidance
2	(v)	$\begin{aligned} & V=\int_{0}^{2} \pi x^{2}\left(1-\frac{1}{4} x^{2}\right) \mathrm{d} x \\ & =\int_{0}^{2}\left(\pi x^{2}-\frac{1}{4} \pi x^{4}\right) \mathrm{d} x \\ & =\pi\left[\frac{1}{3} x^{3}-\frac{1}{20} x^{5}\right]_{0}^{2} \\ & =\pi\left[\frac{8}{3}-\frac{32}{20}\right] \\ & =16 \pi / 15 \end{aligned}$	M1 B1 A1 A1 [4]	integral including correct limits but ft their ' 2 ' from (i) (limits may appear later) condone omission of $\mathrm{d} x$ if intention clear $\left[\frac{1}{3} x^{3}-\frac{1}{20} x^{5}\right]$ ie allow if no π and/or incorrect/no limits (or equivalent by parts) substituting limits into correct expression (including π) ft their ' 2 ' cao oe, 3.35 or better (any multiple of π must round to 3.35 or better)

$\begin{array}{ll} 4 & \text { When } x=0, y=4 \\ \Rightarrow & V=\pi \int_{0}^{4} x^{2} d y \end{array}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \end{gathered}$	must have integral, π, x^{2} and $d y$ soi
$\left.=\pi \int_{0}^{4}(4)\right) d y$	M1	must have π, their (4-y), their numerical y
$\left.\left.=\pi \pi y^{4}-y^{\frac{1}{2}}\right\rceil\right\rfloor_{0}^{4}$	B1	limits $\left[\begin{array}{ll}4 & y_{2}^{17_{2}}\end{array}\right]$
$=(\underline{16-8)}=8 \pi$	$\begin{aligned} & \text { A1 } \\ & \text { [5] } \end{aligned}$	

$$
5 \quad \begin{aligned}
V & =\int_{0}^{1} \pi y^{2} d x=\int_{0}^{1} \pi\left(1+e^{2 x}\right) d x \\
& =\pi\left[x+\frac{1}{2} e^{2 x}\right]_{0}^{1} \\
& =\pi\left(1+\frac{1}{2} e^{2}-\frac{1}{2}\right) \\
& =\frac{1}{2} \pi\left(1+e^{2}\right)^{*}
\end{aligned}
$$

M1	must be $\pi \mathrm{x}$ their y^{2} in terms of x
B1	$\left[x+\frac{1}{2} e^{2 x}\right]$ only
M1	substituting both x limits in a function of x
E1	www
$[4]$	

$$
\begin{array}{ll}
6 & \text { (i) } y=\ln x \Rightarrow x=\mathrm{e}^{y} \\
\Rightarrow & V=\int_{0}^{2} \pi x^{2} d y \\
= & \int_{0}^{2} \pi\left(e^{y}\right)^{2} d y=\int_{0}^{2} \pi e^{2 y} d y *
\end{array}
$$

M1E1
(ii) $\int_{0}^{2} \pi e^{2 y} d y=\pi\left[\frac{1}{2} e^{2 y}\right]_{0}^{2}$

$$
=1 / 2 \pi\left(e^{4}-1\right)
$$

B1
M1
A1
[3]
$1 / 2 \mathrm{e}^{2 y}$
substituting limits in $k \pi e^{2 y}$
or equivalent, but must be exact and evaluate e^{0} as 1 .

$\begin{aligned} & 7 \text { (i) } \int \begin{aligned} & x^{-2 x} d x \quad \text { let } u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x} \\ & \Rightarrow v=-1 / 2 \mathrm{e}^{-2 x} \\ &=-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x \\ &=-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c \\ &=-\frac{1}{4} e^{-2 x}(1+2 x)+c \end{aligned} \\ & \begin{aligned} \text { or } \frac{d}{d x}\left[-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c\right] & =-\frac{1}{2} e^{-2 x}+x e^{-2 x}+\frac{1}{2} e^{-2 x} \\ & =x \mathrm{e}^{-2 x} \end{aligned} \end{aligned}$	M1 A1 E1 M1 A1 E1 [3]	Integration by parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x}$ $=-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x$ condone omission of c product rule
$\text { (ii) } \begin{aligned} V & =\int_{0}^{2} \pi y^{2} d x \\ & =\int_{0}^{2} \pi\left(x^{1 / 2} e^{-x}\right)^{2} d x \\ & =\pi \int_{0}^{2} x e^{-2 x} d x \\ & =\pi\left[-\frac{1}{4} e^{-2 x}(1+2 x)\right]_{0}^{2} \\ & =\pi\left(-1 / 4 \mathrm{e}^{-4} \cdot 5+1 / 4\right) \\ & =\frac{1}{4} \pi\left(1-\frac{5}{e^{4}}\right) * \end{aligned}$	M1 A1 DM1 E1 [4]	Using formula condone omission of limits $y^{2}=x e^{-2 x}$ condone omission of limits and π condone omission of π (need limits)

$\mathbf{8} \quad \begin{aligned} V & =\int \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+e^{-2 x}\right) d x \\ & =\pi\left[x-\frac{1}{2} e^{-2 x}\right]_{0}^{1} \\ & =\pi\left(1-1 / 2 \mathrm{e}^{-2}+1 / 2\right) \\ & =\pi\left(11 / 2-1 / 2 \mathrm{e}^{-2}\right) \end{aligned}$	M1 M1 B1 M1 A1 [5]	Correct formula $\begin{aligned} & k \int_{0}^{1}\left(1+e^{-2 x}\right) d x \\ & {\left[x-\frac{1}{2} e^{-2 x}\right]} \end{aligned}$ substituting limits. Must see 0 used. Condone omission of π o.e. but must be exact

