Q	uestior	Answer	Marks	Guidance
1		$y = (1 + 2x^2)^{\frac{1}{3}} \Longrightarrow y^3 = 1 + 2x^2$		
		$y = (1 + 2x^{2})^{\frac{1}{3}} \implies y^{3} = 1 + 2x^{2}$ $\implies x^{2} = \frac{1}{2}(y^{3} - 1)$	M1	finding x^2 (or x) correctly in terms of y
		$V = \int_{1}^{2} \pi x^{2} \mathrm{d} y = \frac{1}{2} \pi \int_{1}^{2} (y^{3} - 1) \mathrm{d} y$	M1	For M1 need $\int \pi x^2 dy$ with substitution for their x^2 (in terms of y only) Condone absence of dy throughout if intentions clear. (need π)
			A1	www For A1 it must be correct with correct limits 1 and 2, but they may appear later
		$1 \begin{bmatrix} 1 & 1 \end{bmatrix}^2 = 1 \end{bmatrix} = 3$	B1	$1/2[y^4/4 - y]$ independent of π and limits
		$= \frac{1}{2}\pi \left[\frac{1}{4}y^4 - y\right]_1^2 = \frac{1}{2}\pi(2 + \frac{3}{4})$	M1	substituting both their limits in correct order in correct expression, condone a minor slip for M1
		$=\frac{11}{8}\pi$		(if using $y = 0$ as lower limit then '-0' is enough)
		8		condone absence of π for M1
			A1	oe exact only www $(1\frac{3}{8} \pi \text{ or } 1.375\pi)$
			[6]	

Q	Question		Answer		Guidance
2	(i)		$\theta = -\pi/2$: O (0, 0)	B1	Origin or O, condone omission of $(0, 0)$ or O
			$\theta = 0$: P (2, 0)	B1	Or, say at $P x = 2$, $y = 0$, need P stated
			$\theta = \pi/2$: O (0, 0)	B1	Origin or O, condone omission of $(0,0)$ or O
				[3]	
2	(ii)		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y / \mathrm{d}\theta}{\mathrm{d}x / \mathrm{d}\theta}$	M1	their $dy/d\theta/dx/d\theta$
			$=\frac{2\cos 2\theta}{-2\sin \theta}=-\frac{\cos 2\theta}{\sin \theta}$	A1	any equivalent form www (not from $-2\cos 2\theta/2\sin \theta$)
			When $\theta = \pi/2 dy/dx = -\cos \pi/\sin \pi/2 = 1$	M1	subst $\theta = \pi/2$ in their equation
			When $\theta = -\pi/2 dy/dx = -\cos(-\pi)/\sin(-\pi/2) = -1$	A1	Obtaining $dy/dx = 1$, and $dy/dx = -1$ shown (or explaining using symmetry of curve) www
			Either $1 \times -1 = -1$ so perpendicular		
			Or gradient tangent =1 \Rightarrow meets axis at 45°, similarly,	A1	justification that tangents are perpendicular www dependent on
			gradient = $-1 \implies$ meets axis at 45° oe	[5]	previous A1
2	(iii)		At Q, $\sin 2\theta = 1 \Longrightarrow 2\theta = \pi/2, \ \theta = \pi/4$	N1	or, using the derivative, $\cos 2\theta = 0$ soi or their $dy/dx = 0$ to find θ . If the only error is in the sign or the coeff of the derivative in (ii), allow full marks in this part (condone $\theta = 45^{\circ}$)
			\Rightarrow coordinates of Q are $(2\cos \pi/4, \sin \pi/2)$		
			$=(\sqrt{2},1)$	A1 A1	www (exact only) accept $2/\sqrt{2}$
				[3]	
2	(iv)		$\sin^2\theta = (1 - \cos^2\theta) = 1 - \frac{1}{4}x^2$	B1	oe, eg may be $x^2 = \dots$
			$\Rightarrow y = \sin 2\theta = 2\sin \theta \cos \theta$	M1	Use of $\sin 2\theta = 2\sin\theta\cos\theta$
			$=(\pm) x \sqrt{(1 - \frac{1}{4} x^2)}$	A1	subst for x or $y^2 = 4\sin^2\theta\cos^2\theta$ (squaring) either order oe
			$\Rightarrow y^2 = x^2 (1 - \frac{1}{4} x^2)^*$	A1	squaring or subst for x either order oe AG
				[4]	

Question	Answer	Marks	Guidance
2 (v)	$V = \int_0^2 \pi x^2 (1 - \frac{1}{4} x^2) dx$	M1	integral including correct limits but ft their '2' from (i) (limits may appear later) condone omission of dx if intention clear
	$= \int_{0}^{2} (\pi x^{2} - \frac{1}{4}\pi x^{4}) dx$ $= \pi \left[\frac{1}{3} x^{3} - \frac{1}{20} x^{5} \right]_{0}^{2}$		
	$=\pi \left[\frac{1}{3}x^{3} - \frac{1}{20}x^{5}\right]_{0}^{2}$	B1	$\left[\frac{1}{3}x^3 - \frac{1}{20}x^5\right]$ ie allow if no π and/or incorrect/no limits (or equivalent by parts)
	$=\pi\left[\frac{8}{3}-\frac{32}{20}\right]$	A1	substituting limits into correct expression (including π) ft their '2'
	$= 16\pi/15$	A1	cao oe, 3.35 or better (any multiple of π must round to 3.35 or better)
		[4]	

3	Vol = vol of rev of curve + vol of rev of line vol of rev of curve = $\int_{0}^{2} \pi x^{2} dy$	M1	(soi) at any stage	
	$= \int_0^2 \pi \frac{y}{2} dy$	M1	substituting $x^2 = y/2$	for M1 need π , substitution for x^2 , (dy soi), intention to integrate and correct limits
	$=\pi\left[\frac{y^2}{4}\right]_0^2$	B1	$\left[\frac{y^2}{4}\right]$	even if π missing or limits incorrect or missing
	$=\pi$	A1		cao
	height of cone = $3 - 2 = 1$ so vol of cone = $1/3 \pi 1^2 x 1$	B1 B1	h=1 soi	OR $\pi \int_{2}^{3} (3-y)^2 dy$ M1(even if expanded incorrectly)
	$= \pi/3$ so total vol $= 4\pi/3$	A1 [7]	www cao	$=\pi/3^2$ A1 www

4 When $x = 0, y = 4$ $\Rightarrow V = \pi \int_{0}^{4} x^{2} dy$	B1 M1	must have integral, π , x^2 and dy soi
$= \pi \int_{0}^{4} (4y) dy$ = $\pi \sqrt{4} - \sqrt{2} \sqrt{2}$ = $(1 6 - 8) = 8\pi$	M1 B1 A1 [5]	must have π , their (4-y), their numerical y limits $\begin{bmatrix} y_4 & y_2^{\uparrow} \end{bmatrix}^2$

5	$V = \int_0^1 \pi y^2 dx = \int_0^1 \pi (1 + e^{2x}) dx$	M1	must be π x their y^2 in terms of x
	$= \pi \left[x + \frac{1}{2} e^{2x} \right]_0^1$	B1	$\left[x + \frac{1}{2}e^{2x}\right]$ only
	$= \pi(1 + \frac{1}{2}e^2 - \frac{1}{2})$	M1	substituting both x limits in a function of x
	$=\frac{1}{2}\pi(1+e^2)^*$	E1 [4]	www

6	(i) $y = \ln x \Longrightarrow x = e^{y}$	B1	
\Rightarrow	$V = \int_0^2 \pi x^2 dy$	M1	
	$= \int_0^2 \pi (e^y)^2 dy = \int_0^2 \pi e^{2y} dy *$	E1 [3]	
	(ii) $\int_0^2 \pi e^{2y} dy = \pi \left[\frac{1}{2} e^{2y} \right]_0^2$ = $\frac{1}{2} \pi (e^4 - 1)$	B1 M1 A1 [3]	¹ / ₂ e ^{2y} substituting limits in $k\pi e^{2y}$ or equivalent, but must be exact and evaluate e ⁰ as 1.

7 (i) $\int x^{-2x} dx$ let $u = x$, $dv/dx = e^{-2x}$	M1	Integration by parts with $u = x$, $dv/dx = e^{-2x}$
$\Rightarrow v = -\frac{1}{2} e^{-2x}$ $= -\frac{1}{2} x e^{-2x} + \int \frac{1}{2} e^{-2x} dx$	A1	$= -\frac{1}{2}xe^{-2x} + \int \frac{1}{2}e^{-2x}dx$
$= -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + c$		
$= -\frac{1}{4}e^{-2x}(1+2x) + c^{*}$	E1	condone omission of c
$ \operatorname{or} \frac{d}{dx} \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} + c \right] = -\frac{1}{2} e^{-2x} + x e^{-2x} + \frac{1}{2} e^{-2x} $ $= x e^{-2x} $	M1 A1 E1 [3]	product rule
$(ii) V = \int_0^2 \pi y^2 dx$	M1	Using formula condone omission of limits
$=\int_0^2 \pi (x^{1/2} e^{-x})^2 dx$		
$=\pi\int_0^2 x e^{-2x} dx$	A1	$y^2 = xe^{-2x}$ condone omission of limits and π
$=\pi \left[-\frac{1}{4}e^{-2x}(1+2x) \right]_{0}^{2}$	DM1	condone omission of π (need limits)
$= \pi(-\frac{1}{4} e^{-4}.5 + \frac{1}{4})$		
$=\frac{1}{4}\pi(1-\frac{5}{e^4})^*$	E1 [4]	

$8 \qquad V = \int \pi y^2 dx$	M1 Correct formula
$= \int_{0}^{1} \pi (1 + e^{-2x}) dx$	$\mathbf{M1} \qquad k \int_0^1 (1+e^{-2x}) dx$
$= \pi \left[x - \frac{1}{2} e^{-2x} \right]_0^1$	B1 $\begin{bmatrix} x - \frac{1}{2}e^{-2x} \end{bmatrix}$
$= \pi (1 - \frac{1}{2} e^{-2} + \frac{1}{2})$	M1 substituting limits. Must see 0 used. Condone omission of π
$= \pi (1\frac{1}{2} - \frac{1}{2} e^{-2})$	A1 o.e. but must be exact [5]